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SU(1,l) intelligent states: analytic representation in the unit 
disk 
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Department of Physics, Technion-Israel Instilute of Technology, Hafa 32000, Israel 

Received 14 June 1994 

Abstract. lntelligent states of the SU(1.I) Lie group are investigated using the analytic 
representation in the unit disk of the SU(l.l) coherent-slate basis. By developing this 
representation, we study a special class of states. which are both intelligent and coherent. These 
states can be created using Hamiltonim, for which SU(I.1) is the dynamical symmetry group. 

1. Introduction 

The conceptions of coherent states (CS) and intelligent states (IS) have been developed from 
the Glauber cs ]a) [l] .  These states form an overcomplete set and are eigenstates of the 
boson annihilation operator 6. Hence, the Heisenberg uncertainty relation for the harmonic 
oscillator position and momentum observables f and j is an equality over the Glauber 
states la). On the other hand, these states can be constructed by the action of elements of 
the Heisenberg-Weyl Lie group [2] on the vacuum state. This property has been used by 
Perelomov [3] and Gilmore [4], who have generalized the conception of cs for an arbitrary 
Lie group. Since generalized cs are obtained by the action of group elements on an extreme 
state of the group Hilbert space, they can be created using Hamiltonians, for which a given 
Lie group is the dynamical symmetry group. 

Another property of the Glauher cs la) is the equality in the Heisenberg uncertainty 
relation, which can be generalized in order to define IS. For any two observables A and h, 
the uncertainty relation is given by 

(4A)’(AB? 2 al (Wl [A,  h11’W2 (1.1) 

where the variance (AA)’ = (A’) - (#, (4B)’  is defined similarly, and the expectation 
values are taken over the state of the system I*). States for which an equality is achieved 
in (1.1) are called IS [5 ] .  States which also minimize the uncertainty product in (1.1) are 
called minimum-uncertainty states (MUS). For position and momentum observables 2 and 
j, the commutation relation gives a constant: [.?, b] = 3, so, the right-hand side of (1.1) is 
stateindependent and the Is and MUS, in this case, coincide and are given by the Glauher Cs 
[a). However, in the general case, [A, h] = i?, where ? is an operator, and then the Is and 
MUS are generally different. Intelligent states l h ) ~ ~  for operators A and are determined 
from the eigenvalue equation [6] 

(A + ivh)lk)ns  = AIA)AB (1.2) 
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where h is a complex eigenvalue 

and y is a real parameter given by 

There is great interest in IS, especially for SU(2) and SU(1,I) Lie groups. Intelligent states 
were first defined in the present way by Aragone et a1 [SI for SU(2) Hermitian generators. 
These SU(2) IS have been shown recently to be useful for improving interferometric 
measurements [71. A special case of SU(1,l) IS (for amplitude-squared boson operators) 
has recently been discussed [ 8 ] .  The conception of squeezing is naturally related to SU(2) 
and SU(1,l) IS [9,  IO]. We see from equation (1.4) that, for IyI z 1, IS are squeezed in 
b and, for IyI < 1, Is are squeezed in A. Hence, Is can be useful for reducing quantum 
fluctuations [9]. In particular, SU(2) and SU(1,I) Is can be useful in quantum optics for 
improving the precision of measurements 171. 

Unlike the special case of the Heisenberg-Weyl Lie group, Is and cs are generally 
different for arbitrary Lie groups, e.g. for the SU(2) and SU(1,l). However, even in these 
cases, there are some cs which are simultaneously IS, i.e. an intersection occurs between 
these two types of states. This intersection is of special importance in physics because IS, 
which are also coherent, can be created using Hamiltonians, for which a given Lie group 
is the dynamical symmetry group. It is not so for arbitrary Is, since. in general, SU(2) 
and SU(1.1) IS are constructed by using non-unitary operators [ 5 ,9 ] .  The relations between 
SU(2) Is and CS have been obtained in a complicated way by Aragone el al [ 5 ] .  The aim 
of the present work is to develop a simple and effective method for relating SU(1,l) ts and 
cs. This general formalism is derived by using the standard representation of the SU(1,l) in 
the Hilbert space of entire functions, which are analytic in the unit disk. Similar procedures 
can be applied not only to the SU(l, l) ,  but also to other Lie groups. 

2. Properties of the SU(1,l) group and cs 

In this section, we briefly discuss general properties of the SU(1.1) Lie group and the 
corresponding cs. The group SU(I.1) is the most elementary non-compact non-Abelian Lie 
group. It has several series of unitary irreducible representations: discrete, continuous and 
supplementary [I l l .  In the present work, we discuss only the case of the discrete series, 
which has many well known physical applications [3]. The Lie algebra corresponding to 
the group SU(I , l )  has three generators: k+, k- and &, with the following commutation 
relations between them: 

[k3, k*] = ik* [t, &I = ~ k 3 .  (2.1) 

Another basis of generators is appropriate: 

- 1 -  1 -  23 Kl = - (K-  - k+) k* = - (K-  + k+) 2i 2 
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where slightly different definitions of kl and kz are also possible according to different 
conventions. The commutation relations are the same for all conventional definitions of @, 
and K2: 

+ -  
[KI,  K21= -ik3 [kz, k3] = iril [ 9 3 , t , l =  i t .  (2.3) 

The Casimir operator 

for any irreducible representation is the identity operator multipied by a number 

Q = k ( k  - 1)i. (2.5) 

Thus, a representation of the SU(1,l) is determined by a single number k ;  for the 
discrete series, this number acquires discrete values k = Ll, $, 2, , , . . (The corresponding 
representations of the so-called universal covering group SU( 1 , l )  are also given by a single 
number k ,  but there it goes continuously from 0 to 00.) The corresponding state space is 
spanned by the complete orthonormal basis Ik, m )  (m = 0,1,  . . . ,00) 

The SU(1,l) discrete series CS 131 are specified by pseudo-Euclidian unit vectors of the 
form 

n = (coshr. sinhrcosrp,sinhssinrp). (2.8) 

The cs Ik, 5 )  are obtained by applying unitary operators b(F) to the extreme state of the 
orthonormal basis Ik, m = 0): 

~ k ,  <) = exp(c i+  - ~ * R - ) I ~ , o )  = (1 - lcWexp(<%+)lk,O) (2.9) 

where = 
(2.7), one obtains the decomposition of the cs over the orthonormal basis: 

and ( = - tanh feyiP, so I( I -c. 1. Expanding the exponential and using 

(2.10) 

The dynamics of the SU(1,l) CS has been studied by Gerry [12] who have derived the most 
general Hamiltonian which preserves the SU(1,l) cs under time evolution. The evolution 
of quantum systems driven by Hamiltonians which are linear combinations of the SU( 1, l )  
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generators has been considered in an excellent review [13], by using algebraic operatorial 
ordering methods. 

The condition 151 e 1 means that the 'phase space' of the SU(1,l) cs is the interior of 
the unit disk. The cs are normalized but not orthogonal to each other: 

( k ,  C l l k , t d  = (1 - lt,IZ)?l - It2IWl - F;tz)-". (2.11) 

The identity resolution is an important property of the CS: 

(2.12) 

(2.13) 

and, fork = 4, the limit k -+ 4 must be taken after the integration is carried out in the 
general form. Thus, the SU(1,I) CS form an overcomplete basis. One can introduce a 
non-normalized version of the cs 

Then one can construct the Hilbert space of entire functions f ( k .  <), which are analytic in 
the unit disk [ l l ] .  For a state 

we obtain 

(2.16) 

and this state can be represented in the cs basis: 

If) = / W ( t )  (1 - IC12)kff(k t*)lk 0. (2.17) 

We will refer to such a representation as the representation in the unit disk. The scalar 
product of two states is 

kif) = / d r ( t )  (1 - 1t12)2kf(k~ F")W, <*)I" (2.18) 

and the normalization condition for the state I f )  is 

(2.19) 
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The orthonormal basis in the HJbert space of entire functions is given by 

and then we obtain the following useful formula: 

(2.20) 

(2.21) 

A CS Ik, to)  is represented by the function 

F(k, t o 3  0 = ( ( k ,  S'lk, t o )  = ( 1  - I1'olZ)'(l - tWZ. (2.22) 

The generators k* and k3 act on the Hilbert space of entire functions as first-order 
differential operators: 

By using expression (2.10), the following expectation values can be calculated over the 
SU(1,l) cs [9]:  

k 
2 

( I +  l { 1 4 - ( * 2 - f 2 ) =  -(1+sinh2rsin2(p) 
k 

(Aril)' = 
2(1 - 1t12)2 

Wodkiewicz and Eberly [91 have pointed out that an equality holds in the uncertainty relation 

(2.25) 

when (p = 0, x/Z ,  R. 3 n / 2 , .  . , . If (0 = 0, K ,  Zn, . . . , then t is real and Ik, f )  is squeezed 
in 81. If (p = n / 2 , 3 7 ~ / 2 , 5 ~ / 2 .  . . . , then t is pure imaginary and Ik, t )  is squeezed in k2. 
(We note that in our convention (2.2) k, = (K- - k + ) p i ,  kz = (k- + I?+)/& while, in 
the convention of Wodkiewicz and Eberly [9], kl = (e+ + k ) / 2 ,  k~ = (k+ - k-)/2i.) 
We want to find the analytic representations of SU(1,l) IS in the unit disk in order to obtain 
a convenient way of calculating their various properties. In particular, we will be able to 
determine when an intelligent state is also coherent. 

3. The analytic representation of IS 

By using the Hilbert space of entire functions discussed in the preceding section, we 
can write eigenvalue equations of type (1.2) for the SU(1, l )  Hermitian generators Ki 
(i = 1 , 2 , 3 )  as first-order differential equations, Solutions of these equations are entire 
analytic functions, which represent SU(I.1) IS. Equation (1.2) becomes 

(ki + iykj)(A)ij  = hlh)i, i, j = 1 , 2 , 3  (i # j )  (3.1) 
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so Ih)ij are the Is for operators k, and kj (the SU(1.1) IS). Defining 

Aij (k ,  h , ~ ,  0 = ( ( k ,  C'lVij  

(kt + iyi?j)hij = AAij 

(3.2) 

we obtain 

(3.3) 

where ki and kj are first-order differential operators obtained from (2.23). We start by 
considering the IS. We write 

Kz + iyKr = - 
- 

(3.4) - + YB- = p-kt + ptk- 
l - y k + +  2 2 

where p* = (1 iz y ) / 2 .  Then equation (3.3) is 

When integrating this equation, we must treat the cases of p- = 0 ( y  = 1) and p +  = 0 
( y  = -1) separately. 

For 8- = 0 ( y  = 1) we obtain eigenstates of the operator %_. We define 

Z ( k , - , F ) ~ A z i ( k , h = z , y =  1,{) (3.6) 

and then equation (3.5) is 

d 
-Z(k .  t, 1)  = z Z ( k ,  Z, 0 
dC 

(3.7) 

with the simple solution 

Z ( k , z , O  = N e x p ( z O  (3.8) 

Here, and in the following, N denotes a normalization factor. By using the normalization 
condition (2.19), we get, up to an unimportant phase factor, 

N-* = /dp(()(L - I<IZ)"ez~'ez*'l. (3.9) 

Expanding the exponentials and using orthogonality relation (2.21), we obtain 

(3.10) 

where I ,  is the u-order modified Bessel function of the first kind. The eigenstates of the 
lowering operator 8- were first constructed by Barut and Girardello [14], who wrote them 
in the orthonormal basis 

(3.11) 



%'(I. I )  intelligent sfafes 8191 

The coefficients Cm(k. z )  can be calculated using the power-series expansion of Z ( k ,  z ,  t) 
in 1' and comparing this expansion with the genera! form (2.16). The result is 

(3.12) 

As has been shown by Barut and Girardello [14], the states Ik, z) form an overcomplete 
basis with the identity resolution 

7r ~ d 2 z A ~ - ~ ~ 2 1 ~ l ~ K ? ~ - ~ ~ ~ I ~ l ~ l ~ , ~ ~ ~ k , z l  = i (3.13) 

where K, is the u-order modified Bessel function of the second kind. Thus, these states can 
be used to represent a state I f )  belonging to the SU(1,l) discrete series state space, and 
the corresponding representation can be constructed in the Hilbert space of entire functions, 
which are analytic over the whole z-plane. This analytic representation, based on Barut- 
Gkardello states, can be derived for any SU(1,l) 1s [ 151. The Barut-Girardello states Ik, z )  
and the SU(1,l) cs Ik, 5 )  never coincide, excluding the trivial case z = 0 and < = 0 when 
both types of states degenerate to the extIeme state of the orthonormal basis Ik, m = 0). 

Now we take the case @+ = 0 ( y  = -1). Then equation (3.5) is 

(3.14) 
d 

r * - A z ~ ( k .  h ,  y = -1. C )  = [h - 2kClAzl(k,h,  Y = -1, C) 
d5 

with the solution 

A,, (k ,  A ,  y = -1 .5)  = N<-2x exp(-h/c). (3.15) 

We see that this function is not analytic, that is, for y = -1 we cannot obtain a proper 
solution. From normalization condition (2.19) we obtain 

(3.16) 

It is not difficult to see that the integral over ]C l  diverges for all possible values of k and h. 
n u s ,  there are no eigenstates of the raising operator P+. 

Now we integrate equation (3.5) for arbitruy real y.  excluding y = f l .  The solution 
is 

The condition of the analyticity requires 

>/ 1 i.e. y >o.  (3.18) 

The eigemtate of the operator & with eigenvalue h is represented by the function 

h ( k , h , ~  =o,C)=NC , + ~)-k-il(i - t ) - k + i A  (3.19) 
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By taking A = iyh, we obtain, in the limit y + 00. the function that represents the 
eigenstate of the operator k~ with eigenvalue i: 

(3.20) 

We can compare the function 122, ( k , A ,  y , < )  of equation (3.17) with the function 
F(k, to, 0, which represents a CS Ik. 50) (see equation (2.22)). We see that a k2-k1 
intelligent state is also coherent when 

h ( k ,  A, y -+ 00, <) -+ (1 + 0- k+$ ( - <)-k-i'. 

A = f k m .  (3.21) 

Then 

(3.22) 

respectively, and the condition l<ol < 1 requires 0 y c 00, in accordance with analyticity 
condition (3.18). When y > 1 (squeezing in kl), A and <O are real. When y c 1 (squeezing 
in k ~ ) ,  A and (0 are pure imaginary. When the SU(l.1) CS and kz-kI IS coincide, the 
normalization factor N in equation (3.18) is identified, up to an unimportant phase factor, 
to be 

(3.23) 

We see that the comparison of states can be conveniently achieved by the comparison of 
corresponding analytic functions, which represent states in the unit disk. 

We continue by considering the kl-k3 IS. The following equation: 

1k1 + i y k d A d k .  A, y. 0 = AAldk, A, y. <) (3.24) 

can be rewritten in the form 

(3.25) dA13 
dl' 

( f2 - 1 + 2y<)- = -2(iA + ky  +k<)A13.  

By integrating this equation, we find 

- k - i A f m  - K + i h l f i  
A d k , ~ , y , < ) = N [ < + ~  --] [ 5 + r t m i ]  

(3.26) 

The analyticity condition in this case is somewhat complicated 
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For -k < I m h / m  < k, only y = 0 guarantees the analyticity of 1213. By 
comparing the function All(k,  h. y. () of equation (3.26) with the function F(k, 50, <) 
of equation (2.22). we see that a RI-k3 IS is also coherent when 

h = f i k m .  (3.28) 

Then 

-1  
(3.29) 

respectively, and the condition 1501 < 1 requires 0 < y < CO for the upper sign and 
0 > y > -CO for the lower sign, in accordance with analyticity condition (3.27). For 
the upper sign, A lies on the upper imaginary half-axis and 50 is real and negative. For 
the lower sign, A lies on the lower imaginary half-axis and CO is real and positive. When 
l(ol > 0.414, then IyI < 1 and the squeezing is obtained in k ~ . ' W h e n  I(01 ,c 0.414, then 
IyI > 1 and the squeezing is obtained in k3. When the SU(1,l) cs and kl-K3 IS coincide, 
the normalization factor N in equation (3.26) is given, up to an unimportant phase factor, 
by expression (3.23), but with 50 of epuation (3.29). 

Now we consider the case of the K2-k3 Is. The following equation: 

& + iy&lAu(k, A,  y ,  5 )  = % d k , L  Y .  <I  (3.30) 

can be rewritten in the form 

(3.31) 2 dA23 ( 5  + 1 + 2iyC)- = 2(h - iky - k ( ) A z .  
di- 

The solution is 

k - i V m  -k i iA/Z/ ; i?j  
1, y .  <) = N [5 + iy - i-1- [t + iy + i m ]  

(3.32) 

and the analyticity condition in this case is the same as before (3.27). In the usual way, 
we compare the function Au(k .  A ,  y ,  <) with the function F(k. to, <) of equation (2.22) in 
order to find when a &-& Is is also coherent. We obtain the condition 

A = i i k m  (3.33) 

exactly as in the previous case. Then 

i 

Y * W  
(3.34) 

respectively, and the condition 1<01 < 1 requires 0 c y < CO for the upper sign and 
0 > y > -CO for the lower sign, in accordance with analyticity condition (3.27). For the 
upper sign, h and CO lie on the upper imaginary half-axis while, for the lower sign, A and 
CO lie on the lower imaginary half-axis. When 1501 > 0.414, then IyI < 1 and the squeeziFg 
is obtained in k2. When 1(01 < 0.414, then IyI  > 1 and the squeezing is obtained in K3. 

The normalization factor N is the same as before. 
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If one knows entire functions which represent given states, then various eigenvalues 
of different operators can be calculated over these states. Since Aij (k ,  A,  y, () are entire 
analytic functions of t. they can be expanded into the power series 

By using the decomposition of the SU(1,I) IS over the orthonormal basis 

we can write. similarly to general form (2.16), 

(3.35) 

(3.36) 

(3.37) 

This expansion gives the relation between the coefficients LF)(k ,  A ,  y )  and C r ) ( k ,  A,  y ) .  
Then expectation values of an operator 2 over the SU(l.1) 1s are given by 

x r ( 2 k )  [L:y)(k,  A,  y ) ] * L j y ) ( k ,  A ,  y ) .  (3.38) 

Thus, we can calculate expectation values of different operators over the SU( 1,l) IS if we 
know the corresponding analytic functions and their power-series expansions. 

4. Discussion and conclusions 

We have established the analytic representation for all types of the SU(1,l) IS in the cs 
basis. In this representation, the SU(1,l) IS are associated with the entire functions, which 
are analytic in the unit disk. By investigating these functions, we have found the important 
class of the SU(1,l) IS; an intelligent state from this class is simultaneously coherent, so such 
a state can be created by using Hamiltonians for which SU(1,l) is the group of dynamical 
symmetry. Such Hamiltonians are well known in quantum optics [12,13] and some of them 
are related to nonlinear optical devices such as parametric amplifiers and four-wave mixers. 
When these nonlinear devices are used in interferometry, measurements can be improved 
by applying an appropriate intelligent state of the light field. In order to be able to create 
these states of light, one must choose states which lie in the intersection of the SU(1,l) IS 
and a. So, optical schemes can be constructed where a reduction of quantum fluctuations 
is possible. Besides these quantum optical applications, the investigation of the analytic 
representation of the SU(1,l) IS in the unit disk of the CS basis is interesting from the 
purely theoretical point of view. This representation of the SU( 1.1) IS provides us with a 
convenient way of calculating various properties of the IS in different physical realizations 
of the SU( 1,l) Lie group. It is important to note that, since an analytic representation in the 
generalized cs basis can be developed for an arbitrary Lie group, properties of corresponding 
IS can be studied, hy using analytic representations, in a quite general way. 
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